Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities

نویسندگان

  • Shu-Jyun Cai
  • Ching-Wen Li
  • Daphne Weihs
  • Gou-Jen Wang
چکیده

The aim of this study was to develop a porous chitosan scaffold with long-acting drug release as an artificial dressing to promote skin wound healing. The dressing was fabricated by pre-freezing at different temperatures (-20 and -80 °C) for different periods of time, followed by freeze-drying to form porous chitosan scaffolds with different pore sizes. The chitosan scaffolds were then used to investigate the effect of the controlled release of fibroblast growth factor-basic (bFGF) and transforming growth factor-β1 (TGFβ1) on mouse fibroblast cells (L929) and bovine carotid endothelial cells (BEC). The biocompatibility of the prepared chitosan scaffold was confirmed with WST-1 proliferation and viability assay, which demonstrated that the material is suitable for cell growth. The results of this study show that the pore sizes of the porous scaffolds prepared by freeze-drying can change depending on the pre-freezing temperature and time via the formation of ice crystals. In this study, the scaffolds with the largest pore size were found to be 153 ± 32 μm and scaffolds with the smallest pores to be 34 ± 9 μm. Through cell culture analysis, it was found that the concentration that increased proliferation of L929 cells for bFGF was 0.005 to 0.1 ng/mL, and the concentration for TGFβ1 was 0.005 to 1 ng/mL. The cell culture of the chitosan scaffold and growth factors shows that 3.75 ng of bFGF in scaffolds with pore sizes of 153 ± 32 μm can promote L929 cell proliferation, while 400 pg of TGFβ1 in scaffolds with pore size of 34 ± 9 μm can enhance the proliferation of L929 cells, but also inhibit BEC proliferation. It is proposed that the prepared chitosan scaffolds can form a multi-drug (bFGF and TGFβ1) release dressing that has the ability to control wound healing via regulating the proliferation of different cell types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The proliferation of fibroblast cells on the polycaprolactane-chitosan-tannic acid scaffold

Background and Objective: Tissue engineering is a new method for replacing damaged tissue components in order to improve its function. In this method, a porous scaffold mixed with polysaccharide and synthetic antioxidants is first produced and then stem cells are cultured inside it. In this study, the polycaprolactane-chitosan-tannic acid scaffold was used to reproduce the amount Fibroblast cel...

متن کامل

Fabrication of Silk Scaffold Containing Simvastatin-Loaded Silk Fibroin Nanoparticles for Regenerating Bone Defects

Background: In the present study, a tissue engineered silk fibroin (SF) scaffold containing simvastatin-loaded silk fibroin nanoparticles (SFNPs) were used to stimulate the regeneration of the defected bone. Methods: At first, the porous SF scaffold was prepared using freeze-drying. Then simvastatin-loaded SFNPs were made by dissolvation method and embedded in the SF scaffold. Afterwards, the ...

متن کامل

Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method

Background: Since the treatments of long tracheal lesions are associated with some limitations, tissue engineered trachea is considered as an alternative option. This study aimed at preparing a composite scaffold, based on natural and synthetic materials for tracheal tissue engineering. Methods: Nine chitosan silk-based scaffolds were fabricated using three freezing rates (0.5, 1, and 2°C/m...

متن کامل

بررسی زیست سازگاری نانوالیاف الکتروریسی شده بر پایه کیتوسان در همکشتی با سلول‌های استرومایی مغز استخوان (BMSCs)

 Background and Objective: Several studies have been performed to achieve a scaffold for growing stem cells. The purpose of the study was to provide a biodegradable scaffold of chitosan - poly ethylene oxide (PEO) with the ability for growing, proliferation, un-differentiation and apoptosis of bone marrow stromal cells (BMSCs). Materials and Methods: First, formation of chitosan-PEO nanof...

متن کامل

بررسی آثار کامپوزیت ژلاتین– کیتوسان بر کشت سلول‌های استرومایی مغز استخوان موش صحرایی

Introduction: Gelatin and Chitosan are known as biodegradable and biocompatible biopolymers. These biopolymers have recently received increasingly more attention for tissue engineering. The aim of this study was to survey of effects of Gelatin-Chitosan film in viability, proliferation, apoptosis and differentiation on bone marrow stromal cell (BMSCs) culture in rat. Methods: Fist, gelatin- chi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017